對于大多數(shù)自考生來講,數(shù)學(xué)是一門難度較高的自考考試科目,為了幫助更多的自考生順利通過自考數(shù)學(xué)考試,我專門在下方整理匯總了2019年下半年自考02198《線性代數(shù)》復(fù)習(xí)資料(四),希望能夠?qū)ψ钥忌鷤冇幸欢ǖ膹?fù)習(xí)價值!
一、2019年10月自考02198《線性代數(shù)》復(fù)習(xí)資料(四)分享
概念多、定理多、符號多、運算規(guī)律多、內(nèi)容相互縱橫交錯,知識前后緊密聯(lián)系是線性代數(shù)課程的特點,故考生應(yīng)充分理解概念,掌握定理的條件、結(jié)論、應(yīng)用,熟悉符號意義,掌握各種運算規(guī)律、計算方法,并及時進行總結(jié),抓聯(lián)系,使學(xué)知識能融會貫通,舉一反三,根據(jù)考試大綱的要求,
這里再具體指出如下:
行列式的重點是計算,利用性質(zhì)熟練準(zhǔn)確的計算出行列式的值。
矩陣中除可逆陣、伴隨陣、分塊陣、初等陣等重要概念外,主要也是運算,其運算分兩個層次,一是矩陣的符號運算,二是具體矩陣的數(shù)值運算。例如在解矩陣方程中,首先進行矩陣的符號運算,將矩陣方程化簡,然后再代入數(shù)值,算出具體的結(jié)果,矩陣的求逆(包括簡單的分塊陣)(或抽象的,或具體的,或用定義,或是用公式A-1=1 A*,或A用初等行變換),A和A*的關(guān)系,矩陣乘積的行列式,方陣的冪等也是常考的內(nèi)容之一。
關(guān)于向量,(或判別)向量組的線性相關(guān)(無關(guān)),線性表出等問題的關(guān)鍵在于深刻理解線性相關(guān)(無關(guān))的概念及幾個相關(guān)定理的掌握,并要注意推證過程中邏輯的正確性及反證法的使用。
向量組的極大無關(guān)組,等價向量組,向量組及矩陣的秩的概念,以及它們相互關(guān)系也是重點內(nèi)容之一。用初等行變換是求向量組的極大無關(guān)組及向量組和矩陣秩的有效方法。
在Rn中,基、坐標(biāo)、基變換公式,坐標(biāo)變換公式,過渡矩陣,線性無關(guān)向量組的標(biāo)準(zhǔn)正交化公式,應(yīng)該概念清楚,計算熟練,當(dāng)然在計算中列出關(guān)系式后,應(yīng)先化簡,后代入具體的數(shù)值進行計算。
行列式、矩陣、向量、方程組是線性代數(shù)的基本內(nèi)容,它們不是孤立隔裂的,而是相互滲透,緊密聯(lián)系的,例如∣A∣≠0〈===〉A(chǔ)是可逆陣〈===〉r(A)=n(滿秩陣)〈===〉A(chǔ)的列(行)向量組線性無關(guān)〈===〉A(chǔ)X=0唯一零解〈===〉A(chǔ)X=b對任何b均有(唯一)解〈===〉A(chǔ)=P1 P2…PN,其中PI(I=1,2,…,N)是初等陣〈===〉r(AB)=r(B)<===>A初等行變換
I〈===〉A(chǔ)的列(行)向量組是Rn的一個基〈===〉A(chǔ)可以是某兩個基之間的過渡矩陣等等。這種相互之間的聯(lián)系綜合命題創(chuàng)造了條件,故對考生而言,應(yīng)該認(rèn)真總結(jié),開拓思路,善于分析,富于聯(lián)想使得對綜合的,有較多彎道的試題也能順利地到達彼岸。
關(guān)于特征值、特征向量。一是要會求特征值、特征向量,對具體給定的數(shù)值矩陣,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由給定矩陣的特征值求其相關(guān)矩陣的特征值(的取值范圍),可用定義Aξ=λξ,同時還應(yīng)注意特征值和特征向量的性質(zhì)及其應(yīng)用,二是有關(guān)相似矩陣和相似對角化的問題,一般矩陣相似對角化的條件。實對稱矩陣的相似對角化及正交變換相似于對角陣,反過來,可由A的特征值,特征向量來確不定期A的參數(shù)或確定A,如果A是實對稱陣,利用不同特征值對應(yīng)的特征向量相互正交,有時還可以由已知λ1的特征向量確定出λ2(λ2≠λ1)對應(yīng)的特征向量,從而確定出A.三是相似對角化以后的應(yīng)用,在線性代數(shù)中至少可用來計算行列式及An.
將二次型表示成矩陣形式,用矩陣的方法研究二次型的問題主要有兩個:一是化二次型為標(biāo)準(zhǔn)形,這主要是正交變換法(這和實對稱陣正交相似對角陣是一個問題的兩種提法),在沒有其他要求的情況下,用配方法得到標(biāo)準(zhǔn)形可能更方便些;二是二次型的正定性問題,對具體的數(shù)值二次型,一般可用順序主子式是否全部大于零來判別,而抽象的由給定矩陣的正定性,相關(guān)矩陣的正定性時,可利用標(biāo)準(zhǔn)形,規(guī)范形,特征值等到憑證,這時應(yīng)熟悉二次型正定有關(guān)的充分條件和必要條件。
二、總結(jié)
以上就是我為大家分享的2019年自考數(shù)學(xué)復(fù)習(xí)資料,希望能夠?qū)φ跍?zhǔn)備報考2023年自考考試的考生們,有一定的幫助!如果您想?yún)⒓?023年自考考試,可以提前了解一下2023年自考考試科目!
18~23周歲
24~32周歲
33~40周歲
其他
高中及以下
中專
大專
其他
工作就業(yè)
報考公務(wù)員
落戶/居住證
其他
自學(xué)考試
成人高考
開放大學(xué)